Fiscal Policy, the Trade Balance and the Real Exchange Rate: Implications for International Risk-Sharing

Tommaso Monacelli

IGIER, Università Bocconi and CEPR

Roberto Perotti

IGIER, Università Bocconi, CEPR and NBER
What is the effect of a rise in government spending on the (real) exchange rate?
1. IS-LM-Mundell-Fleming

- ↑ aggregate demand

- ↑ interest rate (IS effect)

- nominal + real appreciation
2. Obstfeld and Rogoff (NOEM)

$\uparrow G \rightarrow \downarrow \text{consumption (wealth effect on L supply)}$

$\downarrow \text{money demand}$

$\text{need rise in P level (since M supply given)}$

(nominal) **depreciation** (via PPP)

$$ (\uparrow)p = (\uparrow)e + \bar{p}^* $$
• IS-LM and OR have opposite implications on exchange rate

• Also: IS-LM \rightarrow consumption rises

\[\text{OR} \rightarrow \text{consumption falls} \]
• This paper

OR are right, but for the "wrong" reason
• Related issue: what is the effect on the trade balance?

• Recently: "twin deficits" vs "savings glut" as alternative theories of US current account deficit
• At business cycle frequency: primary budget balance and trade balance negatively correlated
Correlation = -0.23
• What about real exchange rate and fiscal balance?
Literature

- Froot-Rogoff (1991)

- Baseline results (US, UK, Australia, Canada)

- Positive **G shock** →

1. Real exchange rate **depreciates**

2. "**Twin deficits**" (with varying intensity)

3. Consumption **rises**
Methodology

Suppose model with Y (output), G (govt. spending) and T (taxes)

$$X_t = A(L)X_{t-1} + U_t$$

$$U_t \equiv [u^g_t \ u^t_t \ u^y_t]'$$ vector of reduced form residuals
\[u_t^g = \alpha_{gy} u_t^y + \beta_{gt} e_t^g + e_t^g \]

\(u_t^g \) and \(u_t^t \) capture **three effects**.

1. *automatic response* of \(T \) and \(G \) to innovations in \(Y \)

2. *systematic discretionary* response of policy to \(Y \)

3. *structural* shocks
- Net-out effect (1) by resorting to external estimates on tax and spending elasticities to GDP

- Net-out effect (2) by employing quarterly data

- Assume orthogonalization to disentangle e_{t}^{g} and e_{t}^{t}
• Our **SVAR** model

\[
\begin{bmatrix}
\log G_t \\
\log T_{net} \\
\log Y_t \\
\log C_t \\
\log CPI_t \\
\log RER_t \\
\log R_t \\
\end{bmatrix}
\]

• Sample 1975:1 - 2005:2

• Countries: UK, US, Canada, Australia: non-interpolated data
Results from **SVAR** (whole sample): shock to G (1% of GDP)

1. GDP and Consumption **rise**
2. Real exchange rate depreciation (G shock = 1% GDP)
3. Trade balance **deteriorates** (twin deficit) ⇔ (G shock = 1% GDP)

→ But effect in the US is small
• Does identification/ordering matter? YES

• Convention: measure of fiscal deficit should be "cyclically adjusted"

• In practice: put GDP first in ordering
Suppose reduced-form model is

\[u_d = \beta u_y + \varepsilon_d \] \hspace{1cm} (1)
\[u_y = \gamma u_d + \varepsilon_y \] \hspace{1cm} (2)

\(\varepsilon_d = "true" \) deficit/GDP shock; \(\varepsilon_y = "true" \) GDP shock

\(\beta < 0 \) for two effects: (i) \(\uparrow Y \rightarrow \downarrow \frac{D}{Y} \) (D given); (ii) \(\uparrow Y \rightarrow \downarrow D \) (automatic effect on taxes/spending programs)

\(\gamma > 0 \) (standard theory)
• Note: \(u_y \) correlated with \(\varepsilon_d \)

\[
u_y = \frac{\gamma}{1 - \beta \gamma} \varepsilon_d + \frac{1}{1 - \beta \gamma} \varepsilon_y
\]
• Suppose estimate with Choleski ordering (Y first):

\[u_d = \tilde{\beta} u_y + \tilde{\varepsilon}_d \] \hspace{1cm} (3)

\[u_y = \tilde{\varepsilon}_y \] \hspace{1cm} (4)

→ Impose \(u_y \) uncorrelated with \(\tilde{\varepsilon}_d \) (→ upward bias in \(\tilde{\beta} \))

• But in fact..

\[\tilde{\varepsilon}_d = \varepsilon_d - \left(\tilde{\beta} - \beta \right) u_y \]

\[> 0 \]

→ Estimated deficit shock \textbf{negatively} correlated with true GDP shock

\[\uparrow \text{deficit} \rightarrow \downarrow Y \]
In summary: \uparrow deficit \rightarrow \downarrow Y \rightarrow $\uparrow \frac{D}{Y}$ via 2 channels

1. denominator increases

2. automatic effect on taxes/spending

\rightarrow **Spurious negative correlation** between deficit innovation and GDP innovation

- In addition: \downarrow Y \rightarrow $\uparrow \frac{TB}{Y}$ \rightarrow spurious negative correlation between deficit shock and **trade balance** shock (**twin divergence**)
Recursive approach with \textit{Y first} \\

(1) GDP falls
- Recursive approach

(2) Trade Balance Improves \rightarrow Twin divergence
Some theory

→ Use standard **NOEM model** with nominal rigidities (w/ or w/o investment) and **complete** markets

1. RER appreciates

2. Consumption falls (standard wealth effect)

3. Trade balance deteriorates (although it depends on openness and elasticity of substitution)
→ Notice: (1) and (2) strongly linked via **international risk-sharing**

\[
\frac{C_t}{C^*} = \kappa q_t^\sigma
\]
Facts vs Theory: 3 puzzles

<table>
<thead>
<tr>
<th></th>
<th>Facts</th>
<th>Standard Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>RER</td>
<td>Depreciation</td>
<td>Appreciation</td>
</tr>
<tr>
<td>Corr(RER, Consumption)</td>
<td>Both rise</td>
<td>Both fall</td>
</tr>
<tr>
<td>Corr (RER, NX)</td>
<td>Negative</td>
<td>Positive (?)</td>
</tr>
</tbody>
</table>
RER puzzle

1. IS-LM Mundell-Fleming: appreciation

2. Obstfeld-Rogoff: depreciation but for "wrong" reason, i.e., need consumption to fall
Consumption-RER puzzle

1. All models with complete markets predict positive correlation btw. C and RER but in wrong direction

2. Similar prediction in "only-bond" economies

→Necessary condition: need to generate positive consumption response

→Yet this is not sufficient!
• **Three** classes of candidate models: what works / what doesn’t
1. Imperfect Asset Markets

- Savers vs. spenders, Mankiw (2000), Galì et al. (2006), rule-of-thumb (ROT) consumers

- If share or ROTer’s large enough → positive response of consumption
2. Non-separability Utility

(i) KPR 1988: consumption and leisure are **complements**

\[
\frac{1}{1 - \sigma} C_t^{1-\sigma} V(1 - N_t) \quad \sigma > 1
\]

(ii) GHH 1988: MRS btw. C and leisure does not depend on C → **no wealth effect on L supply**

\[
\frac{1}{1 - \sigma} \left(C_t - \psi N_t^c\right)^{1-\sigma}
\]
3. **Equilibrium Variable Markups**

Idea: $\uparrow G \rightarrow \downarrow \text{markup} \rightarrow L^D$ schedule shifts out sufficiently to generate rise in real wage and substitution of leisure into consumption

(i) NCES preferences (Gust et al. 07) \rightarrow Markup depends on relative price of imports ("Dornbusch effect")

(ii) Deep habits (Ravn et al. 07)

(iii) Increasing returns $+$ entry-exit of firms (Devereux et al. 1996)
<table>
<thead>
<tr>
<th>Feature</th>
<th>Rise in Consumption</th>
<th>RER depreciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperf. Asset Market</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Non-separable Utility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHH preferences</td>
<td>YES if sticky P</td>
<td>NO for reasonable calibr.</td>
</tr>
<tr>
<td>KPR preferences</td>
<td>YES</td>
<td>YES if elast L. supply high</td>
</tr>
<tr>
<td>Variable markup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Deep habits</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>IRS - entry/exit</td>
<td>YES</td>
<td>?</td>
</tr>
</tbody>
</table>
• **Example**: consumption-leisure **non-separable** (King, Plosser and Rebelo 1988)

\[U(C_t, L_t) = \frac{1}{1 - \sigma} C_t^{1-\sigma} V(L_t) \quad \sigma > 1 \]

→Consumption and leisure are **complements**
• Marginal utility of wealth:

\[\lambda_t = \frac{N_t^{1+\varphi}}{C_t^\sigma} \]

→ Higher employment raises the marginal utility of consumption

\[\uparrow G \rightarrow \uparrow L \text{ supply} \rightarrow \uparrow MU_c \rightarrow \uparrow C \rightarrow RER \text{ depreciates (via risk-sharing)} \]

• Effect depends on \(\sigma \) and \(\varphi \) (\(\uparrow \sigma \rightarrow \uparrow \varphi \rightarrow \downarrow L^s \text{ elasticity} \))
→ Need sufficiently low σ (i.e., sufficiently high L^s elasticity)
Extension (Monacelli-Perotti 2008)

Decompose RER movements (Engel 1999):

\[
RER_{CPI} = \left(\frac{EP^*_T}{P_T} \right) \left(\frac{(P_T/P_N)^{1-\omega}}{(P^*_T/P^*_N)^{1-\omega^*}} \right) = RER_T^{\text{external}} \times RER_N^{\text{internal}}
\]
1. Measure **traded** goods using **export** and **import** prices (see e.g., Burstein et al. 2006)

2. What drives RER depreciation? **Both** components, but especially "**external**" real exchange rate
Y, T/PY, C/PY, RERIMPEXP_RER-RERIMPEXP, QT, S5 FROM 1971b
Theory

Very difficult to obtain depreciation of both components of RER in standard two-sector model

\[\text{rer}_t = \text{rer}^T_t + \text{rer}^N_t = (1 - \alpha)s_t + (1 - \omega)q_t \]

\(\text{ToT} \) rel. price T goods